Evolutionary Game Theory

Infroduction:

This chapter discusses
evolutionary game theory. Other game
theory strategies analyze simultaneous
decision making reasoning based on
what the other players might do. This
branch of game theory focuses on
decisions by players with no reasoning
behind it. Within this chapfter, the
examination of the field of origin for
evolutionary games will first be
discussed, followed by its methodology.
main features, and real-life applications
of evolutionary game theory within
bioclogical systems.

Economics and Biology

Economics and biology have
certain features in common and there
have been interactions between them.
There is a basic parallel between
economics and sociobiology: the study
of behavior of actors and survival of
those actors in an external environment
marked by competitive processes.!
Evolutionary game theory originated
from the field of evolutionary biology,
which is based on the idea that an
organism's genes largely determine its
observable characteristics, and hence
fitness within its environment.?2 Organisms
that are more fit will tend to increase
their representation in the population.
Through this mechanism, fitter genes
tend to win over time, because they
provide higher rates of reproduction.

The basic postulate in economics
is utility maximization. Humans,
governments, and firms have the
objective of maximizing their
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corresponding preferences. The
biological counterpart is as many genes
or animals of a certain species will be
reproduced in subsequent generations
in order to maintain their survival in the
long-run, known as repreduction
survival. Hirshleifer (1977) created the
table below to explain how these two
disciplines intertwine.

Economic Biological
Obijective Function: Preferences Survival
Principle of Action: Optimization “As-of
Optimization
Opportunities: Production Resource
exploitation
Market Mutualism
Exchange
Crime, war Predation, war
Famity Reproduction
Formation
Competitive Economic Superior Fithess
Selection: Efficiency
Equilibrium:
Short-Run Market [
Clearing
Long-run Zero-proft Reproductive
ratio = 1
Very long-run Stationary Saturated
state environment

Accumulation  Evolution
Technological

advance

Institutional

change

Progress:

Table 1. Processes and Relationships
(Hirshleifer,1977)

Within biological boundaries,
evolutionary game theory is a way of
thinking about evolution at the
phenotypic level when fitness of
particular phenotypes depends on their
frequencies in their population. To
maintain survival or preferences and
reproduction the economic and
biological systems have different
opportunities. In general economics,
survival is based on manufacturing



goods or generating services and
subsequently exchanging these goods
and services on the market and in
biological systems, reproductive survival
could be secured by means of
resources exploitation, mutualism,
predation, war, and reproduction.® The
biological analogy of economic
efficiency could be that behavioral
fitness of a particular organism is
superior relative to its direct competitors.
Now that the connection between
biology and economics has been
discussed, the next section explains the
basic foundation and components of
evolutionary game theory.

Basic Foundation of Evolulionary Games

Unlike simultaneous games where
ach player makes a decision based on
heir prediction on what the other

player will play, evolutionary games
shows that basic ideas of game theory
can be applied even to situations in
which no individual is overtly reasoning
or even explicitly making decisions.

Evolutionary Games: the application of
game theory to evolving populations
within biological systems. Evolutfionary
game theory is useful within this context
by defining the framework of contests,
strategies, and analytics of the
Darwinian competfition model.

The basic area of study for evolutionary
games is different behaviors that have
the ability to persist in populations and
which forms of behavior have the
tendency to be driven out. Within
biological boundaries, evolutionary
game theory is a way of thinking bout
evolution at the phenotypic level when
the fitness of particular phenotypes

Components of Evolutionary Games:

» Strategies: organism’s (player's)
genetically determined
characteristics and behaviors.

» Payoffs: fitness — depends on the
strategies (characteristics) of the
organism it interacts with.

depend on their frequencies in the

population (Maynard Smith, 1982, p.1)
Like any other form of game

theory, evolutionary games must have a

specific setup.

There are two important components of

evolutionary games:

1. Strategies are not chosen by the
organism, rather it is chosen for
them as it is genetically
hardwired into their system:s.

2. Many behaviors involve the
interaction of multiple organisms
in a population and the success if
any one of these organisms
depend on how its behavior
interact with that of others.

Fitness of an individual cannot be
measured in isolation - rather, it has to
be evaiuated in the full population in
which it lives in.

Below is a formal model of strategic
interactions over tfime in which:

A. Higher payoff strategies tend to
displace lower payoff strategies
over time.

B. But there is some inertia
(resistance to any change) and

C. Players do not systematically
attempt to influence other
player’s future actions.

The condition (A) above is a version of
the “survival of the fittest” concept and
condition (B) distinguishes evolutionary
change from revoluticnary change and
explains that aggregate behavior does
not change too quickly. Finally,
condition (C) represents the game
against Nature condition (GAN) and this



separates evolutionary games from
repeated games with trigger strategy
threats.

With that basic foundation of
evolutionary games explained, in the
next section, the importance of fitness of
this type of game theory will be
explained with a real-life example.

Fitness is the Result of Interactions
between organisms of a biological

systems

To understand how game theory
strategies relate to evolutionary biology,
fitness is measured between species to
determine payoffs. Fitness is the payoffs
species receive from interactions with
other species. This payoff depends on
the strategies of the organisms with
which it interacts. Fitness levels are
ilustrated with a game matrix. Let’s use
a real life example to explain how fitness
can be laid out.

The Dung beetle, found primarily
in Egypt is a species whose survival
depends on its size. These organisms eat
the feces of herbivores and omnivores.
Certain mutations however can create
large and small dung beetles. For this
type of beetles, fitness is determined
largely by the extent to which it can find
food and use nutrients efficiently. For this
example, the mutation created a larger
type of beetle. The larger body leads to
a higher difficulty in maintaining
metabolic requirements, whichis a
negative effect on fitness.

Within specific environments,
large and small dung beetles compete
with each other for food. Within the
game matrix below, fitness of payoff is
determined by the amount of food they
receive, There are three possible
outcomes that can happen when
beetles interact with each other for
food.

1. When beetles of the same size
compete, they get the same
amount of food (equal
payoff].

2. Large vs. small beetles leads
to the larger beetle getting
more food (higher payoff}.

3. In all cases, the large beetles
experience less payoff from a
given quantity of food since
they have higher metabolic
rate. Therefore two large
beetles intferacting will have a
lower payoff than two small
beetles interacting.

Below is a game maitrix to illustrate the
conditions above.

Figure 1.
Beetle 2
S L
5,5 1,8
Beege 1 & 33
L

S =small and L = Large

Figure 1 indicates that the larger
beetle always receives d higher payoff
when it plays a smaller beetle. When
two larger beetles meet each other,
they both receive a lower payoff than
when two small beetles play each other
because of the higher metabolic rate.
the overall fitness of a phenotype is



equal to the average fitness from each
of its pairwise interactions with others.
This will determine the reproductive
success — the number of offspring that
carry its gene (hence strategy) into the
next generation.

A key point is that the beetles are
not choosing the strategy they end up
playing. They're genetically hardwired
to play one their entire life. Now that the
game has a visual setup, Nash
Equilibrium and Evolutionary stable
strategies will be discussed.

Nash Equilibrivm and Evolutionarily
Stable Strategies

The equiliorium concept that is
the foundation for economic theory is
Nash Equiliorium — a strategy profile such
that each player is choosing optimally
given the expected choice of the other.
However, Nash Equilibrium does not
apply to evolutionary games for two
reasons. First, the players are not
choosing their strategies; rather, it is
hardwired into them and second, Nash
Equilibrium is a static concept and
assumes that the game is not repeated
over and over again, but in evolutionary
games, the game is repeated many
times to eliminate a specific strategy
throughout subsequent generations.

Within evolutionary games, we
are specifically looking at the long-run
outcome of a system that is under a
non-linear payoff structure. The
analogous notion for Nash Equilibrium
within evolutionary games is known as
evolutionary stable strategies (ESS).

Evolutionary Stable Strategies (ESS):
Genetically determined strategy
that tends to persist once it is
prevalent within a populafion.
These strategies are hard-wired info
the organism and are not
independently chosen.

In a more detailed explanation, an ESS is
a stable situation in the evolutionary
process and defines the state of the
population that is so-called ‘non-
invadable’ by any mutant strategies of
a relatively small fraction of the
populations.* This basically states that
the behavior of the mutants will not
survive in the long-run, Below is @
general description of how ESS works:

| General Concept of ESS:
A strategy T invades strategy S at
level X:
e For a small positive number
X if an x fraction of the
underlying population uses
T and a 1-x fraction of the
population uses S.
Strategy S is evolutionary stable if
there is a small positive number Y
for S such that, when any strategy
Tinvades S at any level of X where
X<Y, the fitness of the organism
playing S is strictly greater than
the fitness of the organism playing
T.

Now let's apply the concept of ESS to
the beetle example previously stated.

ESS Application to Beetle Game

Beetle 2
S L
S 5,5 1.8
Beetle 1 8.1 3,3
L

S=smalland L = Large

We are going to check if the small or
large phenoctype is evolutionary stable.
Let's say that for a small positive number




x, 1-x fraction uses small and x fraction
uses large. Whatever strategy is
assigned 1-xis the sirategy you are
testing to see if ifs evolutionarily siable.
What we do now is take each possible
strategy and use its probability (x or 1-x)
of facing another strategy to determine
its expected payoff.

If we assign small phenotype probability
1-x:

Expected payoff to a small beetle with
random interactions with a population

- With probability (1-x) it meets a
small beetle (S.5) > beetle 1
recieves a payoff of 5.

- With probability (x) it meets a
large beetle (S,L) > beetle 1
receives a payoff of 1.

Expected payoff for beetle 1 being
small with p(small) = 1-x:
5(1-x) +1(x) = 5-4x

Expected payoff to a large beetle with
random interactions with a population
- With probability (1-x) it meets a
small beetle (S.5) 2 beetle 1
receives a payoff of 8.
- With probability (x) it meets a
large beetle (L.L) 2 beetle |
receives a payoff of 3.
Expected payoff for beetle 1 being
large with p(small) = 1-x:

8(1-x) + 3(x) = 8-5x
It is easy to check that for most values of
X, the expected payoff for the large
beetle is greater than the expected
payoff of small beetles when p(small) =
1-X:

8-5x > 5-4x for most values of X,

which indicate that small is not
evolutionarily stable.

Now to check if large is evolutionarily
stable: we assign large beetle the
probability (1-x) and small beetle (x).

Expected payoff to a large beetle with
random interactions with a population
- With probability (1-x) it meets a
large beetle (LL) > beetle 1
receives payoff of 3.

- With probability (x) it meets a
small beetle (L.S) > beetle |
receives a payoff of 8.

Expected payoff for beetle 1 being

large with p(large) = 1-x:

3(1-x) + 8(x) = 3+5x

Expected payoff to a small beetle with
random interactions with a population
- With probability (1-x) it meets a
large beetle (S.L) > beetle 1
receives a payoff of 1.

- With probability (x) it meets a
small beetle (S.S) > beetle 1
receives a payoff of 5.

Expected payoff for beetle 1 being

small with pllarge) = 1-x:

1(1-x) + 5(x) = 1+4x

It is easy to check that for most values of
X, the expected payoff for the large
beetle is greater than the expected
payoff of small beetles when p(large) =
1-X:

3+5x > 1+4x for most values of X,

indicating that the large strategy is
evolutionarily stable.

What both these inequalities are
saying is that when small is assigned
probability 1-x, the fitness of the large
beetle is greater than the fitness of the
small beetle, but when large is assighed
1-x, the fitness of the large beetle is
greater than the fitness of the small
beetle.

So what do these conclusions of ESS
mean?

1. If o few large beetles are
infroduced into a population full
of small beetles: large beetles will
get most of the food and the
small beetles cannot drive out



the larger ones therefore, small is
not evolutionarily stable.

2. If a few small beetles are
infroduced into a population full
of large beetles then the small
beetles will do badly, losing
almost every competition for
food and therefore the large
beetles resists the invasion of
small beetles and therefore large
is evolutionarily stable.

Next, we will discuss how stability is
characterized between monomorphic
and polymorphic populations.

Stability Between Monomorphic and
Polymorphic Populations

Monomorphic populations are
characterized by a single phenotype
within a species; polymorphic
populations, on the other hand, are
characterized by two or more
phenotypes. For the purposes of this
book, we will talk about monomorphic
populations as having one trait (i.e.
strategy) and polymorphic populations
as having two or more traits.

Generally, there are two
conditions of stability: m-stability and o-
stability. The m-stability condition
outlines the convergence of a
population towards a new evolutionary
equilibrium due to an initial increase in
rare alleles that typically arise from an
invading party. The d-stability condition
corresponds to the stability of a
population at its evolutionary equilibrium
against the increase of new alleles. The
d-stability can also be viewed as a local
version of the classic evolutionarily
stable strategy (ESS).

For monomorphic populations,
stability is characterized by the
presence of the d-stability condition;
that is, the presence of an ESS inherently
constitutes stability. One strategy persists

once it is prevalent in a population. For
polymorphic populations, it is a little
more nuanced. We will discuss this
below.

The creation of a polymorphic
population occurs when there exists an
evolutionary equilibrium that is
convergence stable but not local ESS
stable. That is, the introduction of rare
alleles "pulls” on a previously established
equilibrium in order to create a new
one. If stable, then the polymorphic
population is characterized by multiple
strategies existing in equilibrium and
despite substantial differences, earnings
are statistically identical.

Evolutionary Games Across Species

Conventionally, evolutionary
games take the same species and
analyze different strategies as traits
within that species. However, we can
also analyze interactions across
evolutionary boundaries by re-assigning
“strategies"” as different species. Within
this paradigm, an ESS will determine
which of the two species will survive and
which will be run into extinction.

An invading, non-native species
can supplant a native species through 3
scenarios:

1. A novel evolutionary technology:
the invader represents a novel
competitor with respect to the
recipient community and
possesses a novel evolutionary
technology that is evolutionarily
unavailable to the species with
which it competes;

2. An empty niche: where the
native community may have
fewer species that would exist at
its ESS

3. A non-ESS native species: where if
a species of a native community
has a strategy that is away from
its ESS (i.e. not occupying the



peak of the adaptive landscape)
then a species with a strategy
closer to or on the opposite side
of the peak can successfully
invade.

Typically, we would model the
arrival of an invader as a game that
draws aftention to potential changes in
trait values and population sizes of the
invader and native community through
each stage of the invasion process:
arrival, establishment, and
spread/impact. Additionally, we will use
a modified version of the standard
Lotka-Volterra population model of
competition that models a fitness-
generating function: the G-function.

G-function: describes the per i
capita growth and the evolutionary |
dynamics of a species possessing a
particular strategy within a
particular environment.

G(v, v, X)

- vis the heritable traits of the
species that are
hypothesized to be relevant

i for their population ecology

‘ and species interactions

- Uis a vector that describes
‘ different species where ui is
\

the strategy value of the ith
speciesfori=1, ..., n.

- Xis a vector that gives the
current population sizes of
each species within the
community, where x; gives
the population size of the ith
species whose strategy is ui.

The adaptive landscape of the invader
community within the native community
determines the ecological (invasion

potential) and evolutionary (invasion
window) prospects of invasion; if the
invader has a positive invasion potential,
then there must exist an invasion
window. However, the reverse is not
necessarily tfrue: the presence of an
invasion window does not mean that
the non-native species has a positive
invasion potential. Later, we will show
how these concepts are represented
graphically.

Novel G-Function

Under this scenario, three general
outcomes are possible:

1) The invader can arrive with no
invasion window and negative
invasion potential (Figure 1).

2) The invader can arrive with an
invasion window but no positive
invasion potential. In time, the
invasive species will move into a
range of positive fitness and
positive invasion potential. The
possibility exists for the invader to
successfully invade, but it requires
evolution to rescue the
population from extinction
(Figure 1).

3) The invader can arrive with both
an invasion window and positive
invasion potential. This will result in
an immediately successful
invasion. While both species
continue to evolve, the non-
native species can immediately
establish and grow to some
positive equilibrium population
size. If both species coexist
following this establishment, both
may coevolve to a new ESS
where both occupy new peaks
on their respective landscape
(Figure 2).
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Figure 1: An example where the recipient
community (solid line) is ot the threat of an
invasion (dashed line) with a different G-function
(dlistinct evolutionary technology).

a, the species of the recipient community is
at its ESS, the adaptive landscape of the
nonnative species offers no invasion window,
and the non-native species (dashed line, black
dot) has negative invasion potential.

b, the adaptive landscape of the non-native
species offers and invasion window (gray box),
but the non-native species (dashed line, black
dot) starts with negative invasion potential.

¢, If the non-native species were able to
evolve a strategy within its invasion window, then
it would successfully invade and establish a new
ESS with both species coexisting.
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Figure 2: An example where the recipient
community (solid line) is open to invasion from
the current non-naftive species. The non-native
species (dashed line, black dot) has a different
G-function than the native community.

a, When the species of the recipient
community (solid line, black dot) is at its ESS, the
adaptive landscape of the non-native species
offers an invasion window (gray box), and the
non-native species starts with positive invasion
potential.

b, After a successful invasion both species
coexist on new population sizes but the
community no longer has an ESS.

¢, The invading species may evolve to its ESS,
making conditions even less favorable for the
native species



Empty Niche

In this scenario, the native
species has an invasion window, but the
invading species does hot necessarily
have a positive invasion potential. If
they have a negative invasion potential,
the invader can either become extinct
or evolve into the invasion window. If
they arrive with a strategy that falls
within the invasion window, the
ecologically successful invader is under
selection to evolve towards the
unoccupied peak. By fulfilling the niche,
the evolutionarily stable strategy
diversity of species can be filled, with all
species occupying their respective
peaks, and the community is no longer
susceptible to invasion by alternative
strategies from within the same G-
function (Figure 3).

Non-ESS Native Community

For native species that do not
have an ESS, and the invading species is
a part of the same G-function, three
outcomes are possible (Figure 4):

1) Invader arrives with a strategy
that has a negative invasion
potential; they are under a lot of
pressure to evolve towards the
peak of its adaptive landscape.
However, invaders will most likely
become extinct as the resident
species has a "head start” on
evolving towards the peak.

2) Invader arrives with a strategy
that lies between the resident’s
strategy and the peak, orjust on
the other side of the peak. The
non-native community will rise to
its equilibrium. It's not possible for
both species to coexist, so the
resident species will go extinct.

3) Invader arrives within the same
invasion window and on the
opposite side of the peak.
Coexistence is ecologically
stable, but the new community is
not evolutionarily stable as both
species are under pressure to
evolve towards the same peak.
Whichever species reaches the
peak first will outcompete the

other.
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Figure 3: An example of an empty niche
where the recipient community (solid line) has
just two species when the ESS would permit three
species. This has a single G-function and
adaptive landscape.

a, The two species have evolved to local
pecaks of the landscape, but there is a large
invasion window and the opportunity for a non-
native species (black box) with a positive
invasion potential.

b, Following this invasion a new ecological
equilibrium exists with all three species coexisting.
The ESS diversity of species can be filled with all
species occupying their respective peaks. This
community is no longer invadable by alternative
strategies from within the same G-function.
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Figure 4: An example of species replacement
or coexistence when the species of the native
community is not at its ESS.

a, when the native species (black dot), is not
at its ESS, there exists a positive invasion window
(gray box).

b, a non-native species (black box) that
invades with a strategy between the solid and
dashed lines will result in species replacement. ”

¢, a non-native species with a strategy
between the dashed and solid lines will result in
species addition and new ecological equilibrium
for the two-species system. However, this
community is not evolutionarily stable as both are
under selection to evolve towards the same
peck.

d, neither the species replacement or
addition is an ESS, so evolution should result in
convergence on the single-species ESS.

Questions:

1) What are the two conditions of stability
for analyzing stability in monomorphic
and polymorphic populations?

2) Wil the recipient population be driven to
extinction in the empty niche scenario?
Why or why not?

3} What are the two requirements that must
be fulfiled before we can analyze
whether or not an invading species will
be successful in overtaking the recipient
community?

4) What are the two main components of
evolutionary games?

Hummingbirds have created a mutation
over generations to help them get more
food from different types of flowers.
Certain flowers have long stems and the
food they provide the birds are lower
within their cavity. Over generations,
some hummingbirds have developed
loner beaks in order to access more
food. Below are some of the
components for this evolutionary game:
*  Hummingbirds compete with each
other for food sources.

*  Hummingbirds with longer beaks
have a greater fitness level because
they are able to access more food.

*  Short vs. long =(2,2)

*  Short vs. long =(1,5)

*  Long vs. short =(5,1)

e Longvs. long = (4,4)

a. Draw a game matrix for this
game.

b. Test to see whether the short-beak
strategy is evolutionarily stable.

¢. Test to see whether the long-beak
strategy is evolutionarily stable.

Moths have always been a source of
prey for many different animals. For this
problem, we are going to use bears as
the predator for moths. Fitness of moths
are determined by how long they can
live and survive from their predators.
Over generations, moths have developed
a darker body color to hide from their
predators. In this case, moths are
interacting with each other as two
possible food choices for the bear. The
moth that last longer will have a higher
fitness level than the one that is eaten.
Bears will eat the peppered moth more
often because it is easier to spot. Below
are some components of the
evolutionary game:

¢ Peppered vs. peppered = (5,5)

*  Peppered vs. dark = (2,8)

* Dark vs. peppered = (8,2)

* Dark vs. dark = (10,10)



Draw a game matrix for this
game.

Test to see whether the peppered
strategy is evolutionarily stable.
Test to see whether the dark
strategy is evolutionarily stable.






Practice Problem Solutions
1. m-stability and O-stability
2. No they will not, the invading species will occupy the empty niche and all species in that
community will be at ESS; the community is no longer invaluable by alternative strategies from
within the same g-function.
the invasion window and invasion potential
4. Strategies are not chosen by the organism, rather it is chosen for them as it is genetically
hardwired into their systems.
Many behaviors involve the interaction of multiple organisms in a population and the success if
any one of these organisms depend on how its behavior interact with that of others.

w

5. Al Hummingbird #2
Short Long
2,2 1,5
Hummingbird #1 Short
5,1 4,4
Long

B. p(short-beak) = 1-x for P1
Expected payoff for a short-beaked hummingbird with random population interactions:
e Prob. (1-x) it meets a short beaked hummingbird (S,S) 2 uy(S,S) =2
e Prob. (x) it meets a long beaked hummingbird (S,L) = uy(S,L) =1
o 2(1-x)+ 1(x) =2-x
Expected payoff for a long-beaked hummingbird with random population interactions:
e Prob. (1-x) it meets a short beaked hummingbird (L,S) = uwy(L,S) =5
e Prob. (x) it meets a long beaked hummingbird (L,L) - uy(L,L) = 4
o 5(1-x) + 4(x) = 5-x
When p(short)=1-x, expected payoff for long (5-x) > expected payoff for short (2-x) at all
values for X so short is not an evolutionarily stable strategy.

C. p(long-beak) = 1-x for P1
Expected payoff for a short-beaked hummingbird with random population interactions:
¢ Prob. (x) it meets a short beaked hummingbird (S,S) = uy(S,S) =2
e Prob. (1-x) it meets a long beaked hummingbird (S,L) = uy(S,L) =1
o 2(x)+1(1-x)=1+x
Expected payoff for a long-beaked hummingbird with random population interactions:
¢ Prob. (x) it meets a short beaked hummingbird (L,S) - uy(L,S) =5
e Prob. (1-x) it meets a long beaked hummingbird (L,L) = uy(L,L) =4
o 5(x)+4(1-x)=4+x
When p(long)=1-x, expected payoff for long (4+x) > expected payoff for short (1+x) at
all values for X so long is an evolutionarily stable strategy.




6. A. Moth #2
Peppered Dark

5,5 2,8
Peppered 7

Moth #1
8,2 10,10
Dark

B. p(peppered) = 1-x for P1
Expected payoff for a peppered moth with random population interactions:

e Prob. (1-x) it meets a peppered moth (P,P) > uy(P,P) =5
* Prob. (x) it meets a dark moth (P,D) 2 u(P,D) =2
o 5(1-x) +2(x) = 5-3x
Expected payoff for a dark moth with random population interactions:
e Prob. (1-x) it meets a peppered moth (D,P) 2 u;(D,P) =8
e Prob. (x) it meets a dark moth (D,D) = uy(D,D) =10
o 8(1-x) + 10(x) = 8+2x
When p(peppered)=1-x, expected payoff for dark (8+2x) > expected payoff for peppered
(5-3x) at all values for X so peppered is not an evolutionarily stable strategy.

C. p(dark) = 1-x for P1
Expected payoff for a peppered moth with random population interactions:

* Prob. (x) it meets a peppered moth (P,P) 2 u(P,P)=5
*  Prob. (1-x) it meets a dark moth (P,D) = uy(P,D) =2
o 2(x)+1(1-x)=1+x
Expected payoff for a dark moth with random population interactions:
* Prob. (x) it meets a peppered moth (D,P) 2> u,(D,P) =8
e Prob. (1-x) it meets a dark moth (D,D) < u;(D,D) =10
o 8(x)+10(1-x)=10-2x
When p(long)=1-x, expected payoff for dark (10-2x) > expected payoff for peppered
(1+x) at most values for X so dark is an evolutionarily stable strategy.
Remember... a strategy is evolutionarily stable as long as the expected payoff for that

strategy is greater than the other strategy at most values of X.




