(one unit to be taken during the first three years)
Learning Objectives
Students in Mathematical Approaches courses develop an appreciation of the power of Mathematics and formal methods to provide a way of understanding a problem unambiguously, describing its relation to other problems, and specifying clearly an approach to its solution. Students in Mathematical Approaches courses develop a variety of mathematical skills, an understanding of formal reasoning, and a facility with applications.
Guidelines
- These goals are met by courses that treat formal reasoning in one of the following areas.
- Quantitative reasoning: The ability to work with numeric data, to reason from those data, and to understand what can and can not be inferred from those data.
- Logical reasoning: The study of formal logic, at least to the extent that is required to understand mathematical proof.
- The algorithmic method: The ability to analyze a problem, to design a systematic way of addressing that problem (an algorithm), and to implement that algorithm in a computer programming language.
- Where these skills or methods are taught within the context of a discipline other than mathematics or computer science, they must receive greater attention than the disciplinary material.
Approved Courses
- CSCI 161 Introduction to Computer Science
- CSCI 261 Computer Science II
- HON 213 Mathematics of Symmetry
- MATH 103 Introduction to Contemporary Mathematics
- MATH 150 Finite Mathematics
- MATH 160 Introduction to Applied Statistics
- MATH 170 Calculus for Business, Behavioral and Social Sciences
- MATH 180 Calculus and Analytic Geometry I
- MATH 181 Calculus and Analytic Geometry II
- MATH 260 Intermediate Applied Statistics
- MATH 280 Multivariate Calculus
- PHIL 240 Formal Logic